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Abstract. Satellite retrievals of solar-induced chlorophyll
fluorescence (SIF) can provide opportunities to improve our
understanding of terrestrial ecosystem dynamics and the car-
bon cycle at the global scale. Here, we present a new biogeo-
chemical process-based carbon and nitrogen cycle model for
representing SIF retrievals (VISIT-SIF version 1.0: Vegeta-
tion Integrative SImulator for Trace gases and SIF) acquired
by the Greenhouse gases Observing SATellite (GOSAT)
with an hourly time step and a spatial resolution of ap-
proximately 0.31× 0.31°. The implementation of radiation
transfer models (RTMs) helps to address the interaction of
chlorophyll fluorescence with vegetation and atmosphere.
However, the computation of RTMs becomes more time-
consuming, which can make it impractical in applications of
satellite observations with larger data volumes. This study
resolves this issue by parameterizing the radiative transfer
processes and the geometric relationships. This approach en-
ables the ease of implementation of VISIT-SIF for simulating
satellite SIF retrievals even for the satellites having off-nadir
observation angles. With an initial 7 years of data (2009–
2015), our model simulations showed a consistent global
mean value of 0.51± 0.39, with GOSAT SIF retrievals of
0.46± 0.42 mW m−2 sr−1 nm−1; the root mean squared error
was 0.29 mW m−2 sr−1 nm−1. We also found that the mean
seasonal variability in the simulated SIFs was mostly con-
sistent with the GOSAT SIF retrievals at the subcontinental
scale. However, the simulated results indicated less sensitiv-
ity to water stress in the late dry season in arid and semiarid
regions relative to that of the GOSAT SIF retrievals, which is
consistent with the findings of previous studies using multi-
ple biogeochemical process-based models. This comparison

suggested that there is a critical need to improve our knowl-
edge of SIF variability and biophysical processes in such re-
gions.

1 Introduction

Carbon fixation by photosynthesis is a fundamental pro-
cess for carbon cycling in terrestrial ecosystems (Beer et al.,
2010). In the photosynthetic process, solar energy absorbed
by chlorophylls is mainly dissipated through three pathways:
photochemistry at the photosynthetic reaction center, non-
radiative energy dissipation into heat, and reemission as a
photon of fluorescence (Porcar-Castell et al., 2014). While
most of the absorbed solar energy is utilized for photochem-
istry under light-limited conditions, a small amount of en-
ergy (approximately 1 %–2 % of the total absorbed radiation
energy) is reemitted as chlorophyll fluorescence in the vis-
ible (VIS) to near-infrared spectrum between 640–800 nm
(Maxwell and Johnson, 2000). When photosynthesis is light-
saturated or restricted by environmental stress, the energy
flow through heat dissipation increases to prevent damage
to the photosynthetic system due to the accumulation of ex-
cess energy. The amount of energy consumed by photochem-
istry and fluorescence decreases with increasing heat dissi-
pation; hence, the quantum yield of photochemistry is corre-
lated with fluorescence and heat dissipation (Flexas et al.,
2002). Solar-induced chlorophyll fluorescence (SIF) is the
radiation emitted as chlorophyll fluorescence during photo-
synthesis under natural sunlight conditions. Despite the SIF
radiance being weak, recent progress in spectral radiometers
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with high wavelength resolution has provided capabilities for
mapping the global distribution of SIF with satellite observa-
tions (Joiner et al., 2011; Frankenberg et al., 2011; Joiner et
al., 2013; Sun et al., 2017), as well as those at smaller scales,
such as the leaf (Hikosaka and Noda, 2019) and canopy
scales (Yang et al., 2015). Current satellite missions com-
monly quantify SIF emissions from Fraunhofer lines in the
oxygen absorption bands between 756 and 759 nm (Oshio et
al., 2019) and between 734 and 758 nm (Joiner et al., 2013),
with the wavelength corresponding to a spectral peak of SIF
at approximately 740 nm that emanates from photosystems I
and II (PS I and II). While vegetation indices based on sur-
face reflectance data, such as the normalized difference vege-
tation index (NDVI; Karlsen et al., 2008, 2014) and enhanced
vegetation index (EVI; Wu et al., 2010), have been utilized
for describing terrestrial vegetation dynamics, SIF data have
attracted attention because of their ability to provide addi-
tional information for quantifying the photosynthetic activ-
ity of terrestrial vegetation under changing environmental
conditions. Indeed, Joiner et al. (2011) and Frankenberg et
al. (2011) successfully demonstrated strong correlations be-
tween SIF and gross primary production (GPP) for major
global land cover types using satellite data acquired by the
Greenhouse gases Observing SATellite (GOSAT) (Yokota
et al., 2009). In addition, Liu et al. (2018) and Wang et
al. (2019) demonstrated the availability of satellite SIF data
as a diagnostic indicator for vegetation productivity with a
rapid response to underlying environmental stress conditions
such as drought. These SIF retrieval characteristics related
to the photosynthetic process and dynamic status of vegeta-
tion have been implemented in numerous studies for the es-
timation of GPP, improvement in light use efficiency models
(e.g., Guanter et al., 2014; Qiu et al., 2020), identification of
environmental stress factors (e.g., Jiao et al., 2019), and ad-
justment of process-based model parameters (e.g., Norton et
al., 2018).

The intensity of SIF is strongly affected by not only phys-
iological processes but also canopy structure, e.g., the leaf
area index (LAI) and leaf angle distribution, and the geo-
metric relationships among the incidence angle of the emis-
sion to the sensor, solar azimuth, and orientation of leaves
(Porcar-Castell et al., 2014; Zhang et al., 2019). Both the
incident solar radiation to the canopy and the SIF emitted
from each leaf are reflected, transmitted, and absorbed within
the canopy, and SIF is emitted upward from the canopy to
the sensor. Thus, to incorporate the complex radiative trans-
fer process of SIF, some studies have used radiative transfer
models (RTMs) in addition to physiological process models
(Koffi et al., 2015; Lee et al., 2015). These studies commonly
combined the Soil Canopy Observation of Photosynthesis
Energy fluxes (SCOPE; van der Tol et al., 2009, 2014) model
for the computation of radiative transfer with respect to the
multilayer canopy structure and the geometric relationship.
Additionally, in the study by Norton et al. (2019) global SIF
retrieved from satellites was used as constraints on biochem-

ical variables in response to photosynthesis based on the data
assimilation method, leading to substantial improvements in
reducing the uncertainties in global carbon cycle estimates,
with a decrease in the uncertainty of global GPP from ±19.0
to ±5.2 PgC yr−1. The exploitation of process-based mod-
els, including physiological and radiative transfer processes
for satellite-based SIF at the global scale, has the potential
to promote a better understanding of global carbon cycles,
leading to significant advances in the representation of pho-
tosynthetic processes.

GOSAT has been operated since the launch in January
2009, as a part of which SIF retrievals have the longest
observation record of any single satellite sensor. Although
the primary mission of GOSAT is to measure the column-
averaged dry air molar fractions of carbon dioxide (CO2) and
methane (CH4) to constrain the global distributions of their
sources and sinks and improve understanding of carbon–
climate feedbacks, SIF retrievals will provide independent
constraints on terrestrial ecosystem carbon dynamics. In gen-
eral, strict representation of the radiative transfer process
is required to simulate satellite SIF retrievals, especially
for the satellites having off-nadir observation angles due to
their complicated geometric relationships among the inci-
dence angle of the emission to the sensor, solar azimuth,
and orientation of leaves (Zhang and Zhang, 2023). But at
the same time, the resolution of satellite images has kept
increasing (e.g., Vicent et al., 2016), and the implementa-
tion of RTMs for observations is computationally expen-
sive and prohibitively time-consuming. Hence, a simplified
framework of avoiding direct calculation of RTMs can be
an alternative and practical approach to simulate efficiently
the satellite SIF retrievals. This study aimed to develop a
process-based model for representing chlorophyll fluores-
cence emissions during photosynthesis in major land cover
types and a framework for estimating variability in GOSAT
SIF, whereby the radiative transfer process from the surface
canopy to satellite measurements is adjusted by utilizing a
simplified SCOPE model. The implementation of our ap-
proach allows for easy extension to other satellite SIF re-
trievals. Our objective for constructing the model framework
is to stimulate the study of terrestrial ecosystem dynamics by
improving the formulation of related biophysical processes
based on a combination of modeling approaches and GOSAT
SIF.

2 Methods

2.1 GOSAT SIF data

We used the SIF data acquired by GOSAT as reference ob-
servations for evaluating the model estimates. GOSAT was
launched in January 2009 on a sun-synchronous orbit at an
altitude of 666 km with a 3 d revisit cycle and a descend-
ing node at approximately 13:00 local time. GOSAT was
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dedicated to observing two greenhouse gases, namely, CO2
and CH4, with two instruments, the Thermal And Near-
infrared Sensor for carbon Observation–Fourier Transform
Spectrometer (TANSO-FTS) and the Cloud and Aerosol Im-
ager (TANSO-CAI). The former has wide spectral coverage
from VIS to thermal infrared (TIR) radiation, and the latter
is a radiometer covering the ultraviolet, VIS, and shortwave
infrared (SWIR) spectral range to retrieve cloud and aerosol
characteristics. The TANSO-FTS has three bands (bands 1,
2, and 3) at SWIR wavelengths centered at 760, 1600, and
2000 nm, respectively, and a band (band 4) at TIR wave-
lengths covering 5.56–14.3 µm.

GOSAT SIF data are retrieved using radiation spectral
data at a retrieval window between 756.0 and 759.1 nm in
TANSO-FTS band 1 (Oshio et al., 2019). GOSAT SIF data
are derived from the infilling of Fraunhofer lines retrieved
from TANSO-FTS spectra minus the zero-level offset, which
is an artifact signal resulting from nonlinearity in the analog
circuit. The cloud pixel fraction (CPF) within the instanta-
neous field of view (IFOV) of the TANSO-FTS was com-
puted using the integrated clear confidence level information
in the cloud coverage data (TANSO-CAI Level 2 product).
We used the CPF for cloud screening to remove the data con-
taminated by clouds and aerosols. The threshold for cloud
screening was empirically set to CPF > 15 %. Then, the ob-
servational geometries of the satellite observation zenith an-
gle, solar zenith angle, and relative azimuth angle between
GOSAT and the sun were computed for individual GOSAT
observation points for the angularity correction of the simu-
lated SIF, as described in a later subsection.

2.2 Model description

2.2.1 Process-based terrestrial ecosystem model: VISIT

This study used a process-based terrestrial ecosystem model,
the Vegetation Integrative SImulator for Trace gases (VISIT;
Ito, 2010, 2019), to simulate biophysical and biochemical
processes. VISIT is composed of multiple modules that rep-
resent matter flows within ecosystems and exchanges be-
tween the atmosphere and ecosystems. A box-flow scheme
with eight carbon pools (leaf, stem, and root carbon for C3
and C4 plants; soil litter; and humus) is adopted for the sim-
ulation of the carbon cycle in VISIT. GPP is represented as
a function of the leaf area index (LAI), incident photosyn-
thetically active radiation (PAR), air temperature and humid-
ity, soil water content, and ambient CO2 concentration. The
absorption and diffusion of radiation and carbon assimila-
tion are simulated using a two-component canopy model by
de Pury and Farquhar (1997). Leaf photosynthetic capacity
is regulated by leaf nitrogen concentration, and LAI is pre-
dicted by leaf carbon amount and specific leaf area for each
land cover type. This study classified global land cover into
16 land cover types based on the Terra and Aqua combined
Moderate Resolution Imaging Spectroradiometer (MODIS)

Land Cover Climate Modeling Grid (CMG) with the In-
ternational Geosphere–Biosphere Programme classification
(MCD12C1-IGBP) (Sulla-Menashe and Friedl, 2018) with a
spatial resolution of 0.3125°.

2.2.2 SIF simulation

We simulated the spatiotemporal variability in SIF using a
combination of the VISIT and SCOPE version 1.74 mod-
els. A diagram of the VISIT-SIF model system is shown in
Fig. 1. The model system consists of biochemical and bio-
physical processes and geometric and radiative transfer pro-
cesses. The former simulates the canopy structures and the
radiative conditions within the canopy and the actual and po-
tential electron transport rates for a given grid. The simu-
lated electron transport rates are inputs for the quantum yield
of chlorophyll fluorescence, and the absorbed photosynthet-
ically active radiation (APAR) is used to calculate SIF. The
latter simulates radiative transfer processes for the SIF emit-
ted from the upper canopy. The practical operation manner
to simplify the simulation of radiative transfer processes is
given later in this subsection.

In the model system, the chlorophyll fluorescence on the
top of vegetation canopy F (mW m−2 sr−1 nm−1) at the ob-
servation angle is described by a combination of the chloro-
phyll fluorescence emitted from sunlit and shaded leaves as
follows:

F = Fsun
(
1+ rshade/sun

)
, (1)

where Fsun is the chlorophyll fluorescence emitted from sun-
lit leaves at the observation angle (mW m−2 sr−1 nm−1) and
rshade/sun is the ratio of chlorophyll fluorescence emitted
from shaded leaves to Fsun, the details of which will be de-
scribed later. Fsun can be described by

Fsun =
APARsun8F,sun roz/szfu

π
, (2)

where APARsun and8F,sun are APAR (W m−2) and the quan-
tum yield of chlorophyll fluorescence in sunlit leaves, respec-
tively. roz/sz is a correction factor for converting the chloro-
phyll fluorescence emitted from sunlit leaves to remotely
sensed chlorophyll fluorescence in arbitrary observation di-
rections. Here, APAR is the photosynthetically active radia-
tion absorbed by canopy, which is a function of canopy-top
irradiance, canopy reflectance, LAI, and an attenuation coef-
ficient that is a function of biome type and solar angle (Ito
and Oikawa, 2002). APARsun consists of the absorbed beam,
diffuse beam, and scattered beam with the sunlit layer based
on the Farquhar model (de Pury and Farquhar, 1997). Under
the assumption that VISIT simulates biogeochemical pro-
cesses occurring within sunlit leaves where the viewing angle
coincides with the sun zenith angle, we adopted APARsun in
Eq. (2). The variable fu represents the fraction of the SIF
emitted in the upward direction to that in both the upward
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Figure 1. Schematic diagram of the VISIT-SIF model system.

and downward directions at the canopy level. It was obtained
as the average fraction across the 60 canopy layers by operat-
ing the SCOPE model. The variable can be used to estimate
canopy-level fluorescence by considering radiative transfer
processes within the canopy layers. In addition, Eq. (2) de-
scribes the indirect incorporation of VISIT and SCOPE by
multiplying 8F,sun, roz/sz, and fu. 8F,sun is calculated as a
function of energy allocation between photochemistry and
chlorophyll fluorescence at the photosystem level as follows:

8F,sun =8Fm′,sun
(
1−8P,sun

)
, (3)

where 8Fm′,sun and 8P,sun are the quantum yield of fluores-
cence at light-acclimated leaves exposed to saturated irradi-
ance and by actual photochemistry, respectively. 8Fm′,sun is
defined as the ratio of irradiance emitted as chlorophyll fluo-
rescence to total irradiance as follows:

8Fm′ ,sun =
kF

kF+ kD+ kN,sun
, (4)

where k denotes the rate coefficient for chlorophyll fluores-
cence (kF), for nonphotochemical quenching (NPQ) of dark-
acclimated leaves (kD), and for NPQ of sunlit leaves (kN,sun).
In this study, kF and kD are fixed at 0.05 and 0.95 according
to van der Tol et al. (2014), respectively. kN,sun is represented

using the following empirical equations (Flexas et al., 2002):

kN,sun = (6.2473x− 0.5944)x, (5)

x = 1−
8P,sun

8P0
, (6)

where x is the degree of light saturation and8P0 is the quan-
tum yield for photochemistry in dark-acclimated leaves.8P0
is defined as follows:

8P0 =
kP

kF+ kD+ kP
, (7)

where kP is the rate coefficient of irradiance emanated dur-
ing photochemical reactions to the irradiance total (kP = 4.0)
(van der Tol et al., 2014).
8P,sun is described as

8P,sun =8P0
Ja,sun

Je,sun
, (8)

where Ja,sun and Je,sun (µmol m−2 s−1) are the actual and po-
tential electron transport rates, respectively. Ja,sun is given by
VISIT based on de Pury and Farquhar (1997) and van der Tol
(2014) as

Ja,sun = 4Asun
Ci + 20∗

Ci −0∗
, (9)
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where Asun (µmol m−2 s−1) is the CO2 assimilation in sunlit
leaves, Ci (Pa) is the intercellular CO2 partial pressure, and
0∗ (Pa) is the CO2 compensation point of photosynthesis.
Asun is calculated as follows:

Asun = min(Ac,sun,Aj,sun), (10)

Ac,sun = Vcmax
Ci −0

∗

Ci +K ′
), (11)

Aj,sun = Jsun
Ci −0

∗

4(Ci + 20∗)
, (12)

where Ac,sun and Aj,sun are the Rubisco and RuBP
regulation-limited CO2 assimilation in sunlit leaves. Vcmax
(µmol m−2 s−1) is the maximum carboxylation rate, which
varies depending on LAI, canopy temperature, nitrogen con-
dition, and water stress. K ′ (Pa) is the effective Michaelis–
Menten constant of Rubisco and is calculated based on land-
cover-specific parameters and temperature. Jsun is the elec-
tron transport rate in sunlit leaves and is described as

Jsun =
Isun+ Jmax−

√
(Isun+ Jmax)

2
− 4θlIsun Jmax

2θl
, (13)

where Isun (µmol m−2 s−1) is the absorbed photosynthetic
photon flux density, Jmax is the maximum electron trans-
port rate (µmol m−2 s−1), and θl is the curvature showing the
leaf response to irradiance for electron transport (= 0.7; de
Pury and Farquhar, 1997). Jmax is calculated as a function
of Vcmax along with land-cover-specific parameters that vary
with canopy temperature and nitrogen conditions in VISIT.
Je,sun is calculated as follows:

Je,sun = Isun · 8P0. (14)

The geometric coefficients of roz/sz and rshade/sun constantly
vary in space and time with changes in the solar zenith an-
gle (SZ), observation zenith angle (OZ), and relative azimuth
angle of the solar and observation directions (AZ). We em-
ployed a low-computational-cost approach using a lookup
table (LUT) to formulate the geometric coefficients for ev-
ery observation point instead of solving the radiative transfer
process directly with RTMs. The probability distributions of
roz/sz and rshade/sun were computed by shifting the angle pa-
rameters SZ, OZ, and AZ in 10, 10, and 30° angle steps, re-
spectively, and the values of LAI and solar radiation (SRAD;
W m−2) in 0.5 and 200 W m−2 steps, respectively, using the
SCOPE model with the parameters set in Table A1 as fol-
lows:

roz/sz =
FSCOPE,sun (LAI,SZ,OZ,AZ,SRAD)

FSCOPE,sun,sz=oz

(
LAI,SZ,OZ

′

,AZ
′

,SRAD
) ,

(15)

rshade/sun =
FSCOPE,shade (LAI,SZ,OZ,AZ,SRAD)
FSCOPE,sun (LAI,SZ,OZ,AZ,SRAD)

, (16)

where FSCOPE,sun, FSCOPE,sun,sz=oz, and FSCOPE,shade are the
chlorophyll fluorescence from sunlit leaves when the ob-
servation direction and solar incoming direction are located

along one axis (OZ′=SZ, AZ′= 0) and from shaded leaves,
all of which were computed using the SCOPE model. When
implementing Eqs. (15) and (16) in the simulation of SIF
variability, LAI and SRAD are driven by VISIT, and the an-
gle parameters are computed from the geometric information
obtained for every GOSAT observation. A brief overview of
parameter selection for Eqs. (15) and (16) is provided in Ap-
pendix B.

The simulated SIF F given by Eq. (1) is ideally denoted as
the total fluorescence emission that occurs in the full chloro-
phyll emission spectrum. To compare F with GOSAT SIF
retrievals, radiance should be converted to chlorophyll emis-
sions at wavelengths between 756.0 and 759.1 nm (SIF756).
We computed the SIF756 by multiplying the value by a cor-
rection factor as follows:

SIF756 = F · r756, (17)

where r756 is the factor with respect to the fraction of SIF
emissions at wavelengths between 756.0 and 759.1 nm to the
total chlorophyll emissions ranging between 641 and 850 nm.
The shape of the SIF emission spectra varies with the reab-
sorption process and depends on the leaf chlorophyll con-
tent. This study used a simple approach to describe r756 as a
function of the contents of chlorophyll a, chlorophyll b, and
carotenoids per unit of leaf area (Cab; µg cm−1) (Fig. C1).
This study used the land-cover-specific values of Cab from
the study of Norton et al. (2019). Here, the relationship be-
tween Cab and r756 was simulated by operating the SCOPE
model with changes in the LAI but with less sensitivity of
r756 to changes in LAI values between 1 and 8. We used a re-
gression formula (r756 = 1.2 ·10−3 ln(Cab)+ 4.7·10−3) to es-
timate r756 for whole land cover types regardless of changes
in the LAI (Table A2 and Fig. C1).

2.3 Model processing

Initialization of the VISIT model was achieved by a spin-up
run of 900 years with repeated use of climate forces. Then,
the model system was operated over 7 years for 2009–2015
in hourly time steps. In the following analyses, we used only
the model results that were simulated at 13:00 local time and
with a cloud fraction lower than 0.5. The composite data of
the European Centre for Medium Range Weather Forecasts
(ECMWF) Reanalysis – Interim (ERA-Interim) at a 3 h res-
olution (Dee et al., 2011) and the National Centers for Envi-
ronmental Prediction (NCEP) Climate Forecast System Re-
analysis (CFSR) at an hourly resolution (Saha et al., 2010)
were used as the climate forcings. Once all the meteoro-
logical variables in the CFSR were scaled to those of the
reference datasets on a month-to-month basis, the Climate
Research Unit (CRU) Time-series (TS) datasets (Harris et
al., 2020) for precipitation and specific humidity and ERA-
Interim for other variables were used. Regarding the specific
humidity, the ratio of the vapor pressure in the CRU TS to
that in the CFSR, which was computed from the specific hu-
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midity, was substituted to scale the CFSR values. Then, the
hourly composite data were constructed by adding hourly
meteorological fluctuations derived from the CFSR to the 3-
hourly ERA-Interim datasets, for which the specific humidity
was calculated using the dew point and surface pressure data.
Deviations between the hourly CFSR variables and 3-hourly
means were used to determine the hourly fluctuations. For
the wind velocities, the CFSR data were used without correc-
tions. In this process, the ERA-Interim and CRU TS datasets
were interpolated onto the T382 CFSR grid.

3 Results

3.1 Global VISIT-SIF simulation and comparison with
GOSAT SIF

We present the global distribution of the mean SIF from
the GOSAT retrievals and model simulations for 2009 and
2015 at a spatial resolution of 2.5° (Fig. 2). The map of the
model simulations was generated using only the data cor-
responding to the locations and times of available GOSAT
retrievals. GOSAT retrievals show a pronounced increase in
SIF in the tropics in the Amazon, Borneo, and New Guinea,
with an approximate value of 0.67 mW m−2 sr−1 nm−1.
The intensities of SIF showed a gradual decrease with
increasing latitude, whereas large variations in SIF are
shown with increasing longitude. In boreal forests, the in-
tensities of SIF for satellite observations, approximately
0.21 mW m−2 sr−1 nm−1, are lower than those in the midlat-
itudinal zone, with approximately 0.35 mW m−2 sr−1 nm−1.
The model simulations showed spatial patterns similar to
those of satellite observations worldwide. The global mean
value and standard deviation of the SIF for the model sim-
ulations are 0.51± 0.39 mW m−2 sr−1 nm−1, which are in
good agreement with the satellite observations, with a value
of 0.46± 0.42 mW m−2 sr−1 nm−1. However, at the regional
scale, differences in SIF between model simulations and
satellite observations are identified, including overestimation
in southeast Africa and western North America and underes-
timation in central Amazon.

A direct comparison of the mean SIF between the satel-
lite observations and model simulations (Fig. 2) is shown in
Fig. 3a. According to this comparison, the two data prod-
ucts are correlated (correlation coefficient R= 0.76; root
mean squared error RMSE= 0.29 mW m−2 sr−1 nm−1) and
follow the 1 : 1 line, indicating similar intensities. This sug-
gested that VISIT-SIF can produce proper spatial variability
in GOSAT SIF retrievals, whereas deviations from the 1 : 1
line and outliers are identified between the two datasets, de-
pending on the region, as shown in Fig. 2c. These differences
may be due to various factors: the random retrieval error in
GOSAT SIF, which is approximately 0.2 mW m−2 sr−1 nm−1

(Oshio et al., 2019); variations in SIF across space used for

spatial aggregation; and insufficient parameterization of SIF
variability at the local scale in the model.

As described in Sect. 2.2.2, this study simulated GOSAT
SIF retrievals by accounting for the observational geome-
try using the parameters roz/sz and rshade/sun. The perfor-
mances of these geometrical correction parameters in the
simulations are shown in Fig. 3b, which indicates that the
SIF was simulated without geometrical correction. Here, the
SIF variability was simulated by replacing F in Eq. (17) with
Fsun in Eq. (2), where roz/sz = 1. The SIF values are obvi-
ously greater than those of the satellite observations, and the
differences are greater (RMSE= 0.50 mW m−2 sr−1 nm−1)
than the differences in the simulated SIF with geometric cor-
rection, as shown in Fig. 3a. Variability in SIF values to
the geometrical correlation parameters is demonstrated in
Fig. B1, which compares SIF values simulated by shifting
the angle parameters and biophysical parameters in arbitrary
steps. There are substantial changes in SIF values for the an-
gle parameters, SZ and OZ. This is partly expected because
GOSAT has a two-axis pointing mechanism with pointing
angles of ±35 and ±20° in the cross-track (CT) and along-
track (AT) directions, respectively, and it points at any tar-
get observation area mainly by rotating in the CT direction
(Kuze et al., 2012). The geometric relationships among the
incidence angle of the emission to the sensor, solar azimuth,
and orientation of leaves can vary widely between observa-
tions, even for adjacent scans. Accordingly, the differences
without geometrical correction shown in Fig. 3 suggest that
the observational geometry is critical information for obtain-
ing more reliable simulations of GOSAT SIF retrievals. This
topic on the impact of geometric correction on simulated SIF
is shown further in Appendix D.

To evaluate the simulated SIF intensity across land cover
types, the mean SIF values for 2009 and 2015 at a 2.5°
spatial resolution obtained from satellite observations and
model simulations were compared for each land cover type.
Figure 4 shows box plots of the mean SIF values for 12
land cover types. Overall, the satellite observations showed
wide dispersion along with negative SIF values regardless
of the land cover type. The negative SIF values are not ac-
tual physical quantities because of the presence of retrieval
noise, but this study used all the satellite observations with-
out discarding the negative values to prevent significant bi-
ases in the probability distribution of the SIF variability. We
found that model simulations exhibited land-cover-specific
variation consistent with that of satellite observations: higher
SIF values for evergreen broadleaf forests, with mean val-
ues of 0.99 and 0.96 mW m−2 sr−1 nm−1 for model simula-
tions and satellite observations, respectively, and lower SIF
values for open shrublands and grasslands, with mean val-
ues of 0.17 and 0.31 mW m−2 sr−1 nm−1 for model sim-
ulations and 0.11 and 0.16 mW m−2 sr−1 nm−1 for satel-
lite observations, respectively. However, the divergence in
the mean values between the model simulations and satel-
lite observations increased for some land cover types, es-
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Figure 2. Global distributions of annual mean SIF (mW m−2 sr−1 nm−1) for (a) VISIT-SIF simulations, (b) GOSAT SIF retrievals, and
(c) their differences for 2009 and 2015. The spatial resolution is aggregated to a 2.5° grid.

https://doi.org/10.5194/gmd-18-2329-2025 Geosci. Model Dev., 18, 2329–2347, 2025



2336 T. Miyauchi et al.: Process-based modeling of solar-induced chlorophyll fluorescence

Figure 3. Relationship between the GOSAT SIF retrievals (x axis) and simulated SIF (y axis) (a) with geometric correction using the
parameters roz/sz and rshade/sun and (b) without correction. The scatterplots represent the mean annual values aggregated to a 2.5° grid. The
color bar shows the number of data points.

Figure 4. Box plots of annual mean values (2009–2015) of VISIT-
SIF simulations (light gray) and GOSAT retrievals (gray) on a 2.5°
grid for 12 land cover types: ENF – evergreen needleleaf forests;
EBF – evergreen broadleaf forests; DNF – deciduous needleleaf
forests; DBF – deciduous broadleaf forests; MF – mixed forests;
CS – closed shrublands; OS – open shrublands; WS – woody sa-
vannas; SV – savannas; GL – grasslands; CL – cropland; and MS –
mosaic. The black dots represent the mean values.

pecially for deciduous forest types: deciduous needleleaf
forests (0.36 mW m−2 sr−1 nm−1) and deciduous broadleaf
forests (0.46 mW m−2 sr−1 nm−1). This suggested that there
is some inconsistency in the seasonal cycle of the simulated
and observed SIF variations for these land cover types. A
detailed analysis of the seasonal variability is given in the
following subsection.

3.2 Seasonal SIF variability

To compare the seasonal variability in the simulated SIF with
that of satellite observations, the global terrestrial area was
divided into 42 subcontinental regions based on the source
regions for global CO2 and CH4 source and sink estimates
that have been applied in the GOSAT Level 4 data product.
The boundaries of these source regions are shown in Fig. E1.
Figure 5 shows the seasonal variability in the monthly mean
SIF averaged over 7 years (2009–2015) for the model sim-
ulations and satellite observations and their differences over
the 42 regions. The seasonal cycles appear rather similar for
model simulations and satellite observations, with relatively
large amplitudes in the midlatitude regions and small am-
plitudes in the tropics and high-latitude regions. Seasonal
variations in the model simulations vary smoothly relative to
those based on the satellite observations in the regions where
GOSAT retrievals showed large fluctuations with time; these
include region 8, which is dominated by temperate deciduous
forests; region 14, temperate grasslands and shrublands; re-
gion 22, grasslands and savannas; region 17, tropical forests
and savannas; and region 16, tropical forests, savannas, and
deserts. The variations in these regions were 0.82, 0.52, 0.48,
0.16, and 0.37 mW m−2 sr−1 nm−1 for the model simulations
and 1.15, 0.82, 0.72, 0.67, and 0.65 mW m−2 sr−1 nm−1 for
the satellite observations, respectively. For the maximum dif-
ferences in the monthly mean values between the model sim-
ulations and satellite observations, the model overestimates
the intensity of SIF by up to 0.68, 0.66, 0.64, 0.55, and
0.52 mW m−2 sr−1 nm−1 in region 22, region 24 (dominated
by savannas), region 30 (tropical forests and deserts), region
29 (deserts), and region 15 (grasslands and savannas), respec-
tively. These overestimates in the model resulted from incon-
sistencies in vegetation phenology during the dormant sea-
son: the model estimates vigorous photosynthetic activities,
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while satellite observations depict the attenuation of photo-
synthesis.

To quantify the differences in the seasonal variations
and intensities between the model simulations and satellite
observations, the RMSE and R2 were computed for each
region based on the monthly mean SIF values (Fig. 6).
Strong linear relationships and lower RMSE values were
observed over the subarctic zone on the Eurasian conti-
nent (regions 25, 26, 41, and 42), with R2> 0.88 and
RMSE< 0.08 mW m−2 sr−1 nm−1. In contrast, weaker rela-
tionships were found in southeastern Africa (regions 22 and
24) and the Indian subcontinent (region 30), with R2< 0.03
and RMSE> 0.33 mW m−2 sr−1 nm−1. We found that these
discrepancies occurred for the late dry season to early rainy
season when the number of valid retrievals was not much
lower than that in the rainy season. This relatively high level
of data acquisition can reduce random retrieval errors; thus,
the large differences in the seasonal variations in SIF and its
intensity in the three regions suggested that the model rep-
resentation could be poorly constrained, especially for the
vegetation response to water stress over arid and semiarid re-
gions, perhaps due to a lack of ground-based observations.

We further examined monthly mean SIF variations from
2009 to 2015 for nine selected regions extending from the
tropics to the midlatitudinal region (Fig. 7). The model sim-
ulations appear to capture the seasonal cycles of satellite ob-
servations except for region 23 with tropical forests, grass-
lands, and savannas and region 34 with tropical forests. In
particular, for region 23, the most striking difference was ob-
served for July and September, when satellite observations
showed a distinct decrease, while model simulations indi-
cated weaker seasonal variability. In the tropical forest area
in this region, the seasonal precipitation cycle has weakened,
with a significant increase in the boreal winter dry season
and a decrease in the boreal spring wet season, which may be
driven by changes in sea surface temperature, particularly in
the Atlantic and Indian oceans (Wang et al., 2021). However,
the GOSAT SIF yields a distinct seasonality. Note that region
23 has fewer valid retrievals due to the existence of continu-
ous clouds. The spatiotemporal variations in SIF variability,
as well as regional meteorological and hydrological cycles,
in tropical regions need further investigation.

4 Discussion

Interest in satellite-based SIF observations has grown since
successful global SIF retrievals have been achieved with
GOSAT, with the hope that these observations can stimulate
our understanding of terrestrial ecosystem dynamics. How-
ever, as SIF is only a small amount of energy being reemit-
ted in concert with photochemical reactions and heat dissi-
pation, a biochemical process model is needed to connect
SIF retrievals with ecosystem-level processes. Various un-
derlying models are still in development (e.g., Parazoo et

al., 2020), and the retrieved SIF intensity significantly varies
among satellites with different observed spectral ranges, ob-
servational times, and angles between the viewing and sun di-
rections (Oshio et al., 2019; Murakami et al., 2024). Here, we
developed a VISIT-SIF biogeochemical process model to es-
timate GOSAT SIF retrievals by incorporating observational
geometry using the parameters roz/sz and rshade/sun. This geo-
metric correction is necessary for predicting the GOSAT SIF
retrievals precisely, as shown in Figs. 3 and C1, partly be-
cause GOSAT has a wide range of observation angles due to
the operation of the two-axis pointing mechanism for precise
viewing of target locations (Kuze et al., 2012).

This study represents the radiative transfer process within
a given canopy using the SCOPE model in a simplified man-
ner. This approach enables the implementation of the RTM
for simulating GOSAT SIF retrievals with large data volumes
and complicated observational geometries, but further im-
provement is needed in the simulation of chlorophyll fluores-
cence yield. For example, VISIT-SIF accounts for the process
of chlorophyll fluorescence reabsorption at the whole-canopy
level through the calculation of r756, whereas Li et al. (2022)
evaluate the reabsorption at the single-leaf level using a sim-
plified scattering fluorescence coefficient in SCOPE. The im-
plementation of effects of internal reabsorption at the single-
leaf level, or further fine level, can allow VISIT-SIF to incor-
porate more realistic fluorescence yield.

The new model system presented here still has some room
for improvement; however, it is appropriate for estimating
the global distribution with respect to the mean values of the
GOSAT SIF retrievals (Fig. 2). The comparison with GOSAT
SIF retrievals provided insights into how SIF emitted from
the terrestrial biosphere responds to seasonal changes in me-
teorological and hydrological conditions in a given region.
This comparison revealed that the seasonal variability in the
simulated SIF indicated an insufficient decline for the late
dry season in arid and semiarid regions relative to that of
satellite observations (Figs. 5 and 7). Similarly, Parazoo et
al. (2020) reported that insufficient NPQ formulation under
drought conditions, especially for lower-latitude regions, can
result in a weak decrease in SIF with little to no sensitivity
to water stress. As shown in Sect. 2.2.2, this study calcu-
lates NPQ (= kN, sun) using the variables Vcmax, Jmax, and
Isun, which vary in response to canopy structure and environ-
mental stresses in the model, such as leaf area index, tem-
perature, and water and light limitations. Accordingly, our
simulations of GOSAT SIF retrievals using an initial config-
uration of ecophysiological model parameters demonstrated
that careful improvements in model representation are nec-
essary for estimating NPQ dynamics and related biophysical
processes, particularly as they relate to water stress in arid
and semiarid regions.

In terms of the NPQ response to water stress, soil water
content is a crucial factor that directly restricts Vcmax and
thus Jmax in the VISIT model, as well as temperature and in-
tercellular CO2 concentration (Ito and Oikawa, 2002). Water
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Figure 5. The seasonal variability in SIF averaged for 2009 and 2015 for (a) VISIT-SIF simulations and (b) GOSAT retrievals in 42 subcon-
tinental regions and their differences and (c) the difference between VISIT-SIF simulation and GOSAT retrievals. Gray grid cells indicate
that no data were available.

Figure 6. The relationships between R2 and RMSE for the mean
monthly variability in the VISIT-SIF simulations and GOSAT re-
trievals in the 42 subcontinental regions. The numbers in the figure
correspond to the regional IDs shown in Fig. E1.

stress is expressed as an empirical function of the soil water
content, with coefficients for the field capacity of soil water,
soil moisture photosynthesis limitation, and weight factors
of water stress sensitivity, all of which have been validated
using field observational data at 17 sites worldwide. The ap-
parent discrepancy in the simulated SIF seasonality in arid

and semiarid regions may be primarily attributed to the poor
representation of water stress using the empirical relationship
and the limited amount of available validation data. Indeed,
despite the obvious importance of water stress, the phys-
iological mechanisms underlying the relationship between
photosynthesis and water stress have not been well charac-
terized, and a more mechanistic understanding is needed.

For parameter optimization using satellite SIF retrievals,
Norton et al. (2018) proposed a data assimilation framework
to minimize model–observation misfitting by constraining
uncertainty in some key parameters, such as Vcmax and Cab,
using satellite SIF retrievals as assimilated observations. As
these parameters directly or indirectly define the photosyn-
thetic rate, the posterior parameters demonstrated a success-
ful reduction in uncertainty in global GPP estimates. Their
results encouraged us to use a data assimilation framework
to combine GOSAT SIF retrievals and VISIT-SIF, which may
provide the benefit of constraining SIF and improving GPP
estimates. Saito et al. (2014) constrained VISIT parameters
by incorporating atmospheric CO2 concentration observa-
tions in a data assimilation system, but GOSAT SIF retrievals
have not yet been tested to optimize VISIT-SIF parameters.
Thus, optimizing VISIT-SIF parameters would be our next
step for improving model representations of SIF variability
and biophysical processes on a global scale, as well as fur-
ther improving model formulations associated with SIF vari-
ability.
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Figure 7. Time series of monthly SIF for VISIT-SIF simulations (blue) and GOSAT retrievals (pink) for 2009 and 2015 in nine selected
regions: 6, 7, 10, 12, 23, 26, 32, 34, and 39. The shaded areas shows the standard deviations.

Satellite SIF observations provided us with a new indi-
cator of photosynthetic capacity on a global scale. Avail-
able satellite sensors capable of SIF retrievals include
the Global Ozone Monitoring Experiment-2 (GOME-2)
on board the Meteorological Operational Satellite Program
of Europe (MetOp) (Joiner et al., 2011), the Orbiting Car-
bon Observatory-2 (OCO-2) (Sun et al., 2017), and the TRO-
POsheric Monitoring Instrument (TROPOMI) on board the
Sentinel-5 Precursor (S5p) (Zhang et al., 2019), as well as
TANSO-FTS on board GOSAT and TANSO-FTS-2 on board
GOSAT-2, which is the successor of GOSAT (Mohammed et
al., 2019). Although these satellite sensors are designed for
atmospheric studies and are not dedicated to SIF monitoring,
these SIF retrievals allow for the investigation of ecosystem
responses to environmental stresses even at the local scale
(e.g., Lee et al., 2013; Murakami et al., 2024). This study uti-
lized GOSAT SIF retrievals to evaluate the newly developed
VISIT-SIF model, which demonstrated the ability to express
seasonal SIF variability even in areas lacking ground-surface
observations. The measurement coverage is not always suf-
ficient in the tropics, which are often covered by clouds. By
utilizing other satellite SIF retrievals that were observed with

different spectral ranges, IFOV, measurement coverage, and
on-orbit operation will complement each other for tracking
variations in SIF and GPP with high accuracy and high spa-
tial and temporal resolutions.

5 Conclusions

We developed a new biochemical process model to sim-
ulate GOSAT SIF retrievals. The SIF variability emitted
at the top of the canopy is expressed as a combination
of the chlorophyll fluorescence emitted from sunlit and
shaded leaves as determined by the SCOPE model. The
model was operated with an hourly time step and a spa-
tial resolution of 0.3125° for 2009 and 2015, and a geo-
metrical correction was included to account for changes in
the SIF intensity depending on the viewing angle of the
sensor and the direction of the sun. Then, the simulated
SIFs were compared with the GOSAT SIFs using only the
data corresponding to the location and time of the valid
GOSAT observations. An important first step was to eval-
uate the global distribution of mean SIF values. The com-
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parison of the model simulations with the GOSAT SIF re-
trievals showed consistency overall, with global mean values
of 0.51± 0.39 and 0.46± 0.42 mW m−2 sr−1 nm−1 for the
model simulations and satellite observations, respectively,
with RMSE= 0.29 mW m−2 sr−1 nm−1. We also compared
the seasonal variability in SIF over the 42 subcontinental re-
gions. This comparison indicated overestimates of simulated
SIF during the dormant season in arid and semiarid regions,
with less sensitivity to water stress. This study is still only
a first step toward a comprehensive understanding of global
SIF variability and its interaction with biophysical processes.

Appendix A: Input parameters

Table A1. Parameters of SCOPE used for computing and validating roz/sz and rshade/sun.

Parameter Symbol Unit Value or range

Solar zenith angle SZ degree 0–75
Observing zenith angle OZ degree 0–75
Relative azimuth AZ degree 0–180
Leaf area index LAI m2 m−2 0–10
Incoming short wave radiation SRAD W m−2 0–1000
Air temperature Ta °C 20
Air pressure p hPa 970
Atmospheric vapor pressure ea hPa 15
Roughness length for momentum of the canopy zo m 0.25
Displacement height d m 1.34
Leaf boundary resistance rb s m−1 10
Leaf angle distribution LID (LIDFa , LIDFb) Spherical
Leaf angle distribution parameter a LIDFa −0.35
Leaf angle distribution parameter b LIDFb −0.15
Canopy height Hc m 2
Leaf width w m 0.1
Maximum carboxylation rate Vcmax µmol m−2 s−1 60
Chlorophyll a+ b content Cab µg cm−2 40
Carotenoid content Cca µg cm−2

Dry matter content Cdm g cm 0.012
Leaf equivalent water thickness Cw cm 0.009
Leaf thermal reflectance ρ (thermal) 0.01
Leaf thermal transmittance τ (thermal) 0.01
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Table A2. The values of r756 for each land cover type as estimated
using the regression formula shown in Fig. C1.

Land cover type r756

Evergreen needleleaf forest 0.0087
Evergreen broadleaf forest 0.0087
Deciduous needleleaf forest 0.0082
Deciduous broadleaf forest 0.0091
Mixed forest 0.0085
Closed shrublands 0.0073
Open shrublands 0.0082
Woody savannas 0.0085
Savannas 0.0085
Grasslands 0.0082
Permanent wetlands 0.0076
Croplands 0.0089
Urban and developed area 0.0080
Cropland/natural vegetation mosaic 0.0080
Snow and ice 0.0080
Barren or sparsely vegetated 0.0080

Appendix B: Evaluation of roz/sz and rsd in LUT and
SCOPE

The sensitivity of roz/sz and rsd to key parameters for de-
termining SIF was examined as a preliminary validation
for the input parameters in SCOPE (Fig. B1). The val-
ues of roz/sz = 0.5 and rsd = 0.12 were used as a refer-
ence value for the comparison. Here, these values were de-
rived from representative conditions in region 39 (LAI= 5,
SRAD= 800 W m−2, SZ= 30°) with OZ= 0 (nadir viewing
angle). The value of roz/sz increases with decreases in the
difference in angles between SZ and OZ. In cases where SZ
is approximately at nadir, OZ<SZ, and LAI< 2, then roz/sz
can exceed 1. In cases of OZ=SZ, the value of rsd becomes
0. We selected parameters of LAI, SZ, OZ, AZ, and SRAD
to determine the variables roz/sz and rsd in Eqs. (15) and (16).
The parameters that are not defined in the VISIT model, such
as w, Hc, and Cab, were excluded from the functions even if
those show sensitivity to SIF. Leaf angle distribution (LID),
being highly sensitive to roz/sz, is also excluded due to lack
of sufficient parameterization of leaf angle dynamics over the
globe.
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Figure B1. The impact of roz/sz and rsd on SIF calculations (F in Eq. 1) when changing each input parameter in Table A1. The impact was
estimated using SCOPE by changing input parameters as shown in the upper table. The difference of 0 indicates that the simulation results
from LUT and SCOPE are identical for parameters that are not used in LUT.
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Appendix C: Relationship between Cab and r756

Figure C1. The relationship between Cab and r756 computed with the SCOPE model. r756 was simulated by correcting Cab to fall in the
range of 5 to 80 µg cm−2 at 5 µg cm−2 intervals and LAI to fall in the range of 1 to 8 at an interval of 1 (open triangles).

Appendix D: Comparison of simulated SIFs with the
geometric correction and that for nadir viewing angle

The simulated SIF for nadir viewing angle was estimated
with OZ= 0 (Fig. D1). A comparison between simulated
SIFs with geometric correction and that for nadir viewing an-
gle shows a difference in SIF values in a range from−27 % to
63 %. This difference varies with changes in angles between
the incoming sunlight and the observation direction.

Figure D1. Comparison of simulated SIFs with geometric correction and that for nadir viewing angle for GOSAT observation points for
2009 and 2015.
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Appendix E: IDs in 42 subcontinental regions

Figure E1. The 42 subcontinental regions.
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